Free time & chunking modeling
  • Versions
    • Latest
    • v0.1
  • Source Code
  • Report a Bug
  1. Function reference
  2. Calculate the overall deviance
  • Version 0.1
  •  
  • About
  • Development notes
    • Notes
    • 2024-05-16 Meeting Notes
    • Extra primacy parameter
  • Notebooks
    • Data
      • View the data structure
      • Exploratory data analysis
      • Subject-level data
    • Model 1: Original model
      • Main results
      • Parameter identifiability
      • Sensitivity to tau
      • Experiment 3
      • Exploring model predictions
    • Model 2: Include encoding time
      • Main results
    • Model 3: Non-linear recovery
      • Explore model predictions
      • Basic fits
      • Bootstrapping data and fits for parameter uncertainty estimation
      • Extra primacy parameter
      • Linear recovery as a random variable
  • Function reference
    • Aggregate Data
    • Perform bootstrapped estimation
    • Calculate the deviance of a model
    • Get data object from a file
    • Generate a bootstrapped dataset
    • get_data function
    • Inverse Logit Transformation
    • Logit Transformation
    • Calculate the overall deviance
    • Plot Bootstrap Results
    • Plot Linear RV Recovery
    • Preprocesses the data
    • Execute an expression and save the result to a file or load the result from a file if it already exists.
    • Serial Recall Model

On this page

  • Calculate the overall deviance
    • Description
    • Usage
    • Arguments
    • Value

Calculate the overall deviance

Description

This function calculates the overall deviance for a given set of parameters and data. It splits the dataset by the given column and calculates the deviance for each subset. The overall deviance is the sum of the deviances for each subset.

Usage

overall_deviance(params, data, by = c("chunk", "gap"), ..., priors = list())

Arguments

  • params: A vector of parameters.
  • data: A data frame containing the data.
  • by: The column(s) to split the data by.

Value

The overall deviance.

Back to top
Logit Transformation
Plot Bootstrap Results