Package index
-
bmm-package
- Easy and Accesible Bayesian Measurement Models Using 'brms'
-
supported_models()
- Measurement models available in
bmm
-
bmm_options()
- View or change global bmm options
-
bmm()
fit_model()
- Fit Bayesian Measurement Models
-
bmmformula()
bmf()
- Create formula for predicting parameters of a
bmmodel
-
update(<bmmfit>)
- Update a bmm model
-
summary(<bmmfit>)
- Create a summary of a fitted model represented by a
bmmfit
object
Extract model information
Utility functions for extracting default priors, generate stan code, stan data, etc.
-
default_prior(<bmmformula>)
- Get Default priors for Measurement Models specified in BMM
-
fit_info()
- Extract information from a brmsfit object
-
stancode(<bmmformula>)
- Generate Stan code for bmm models
-
standata(<bmmformula>)
- Stan data for
bmm
models
-
mixture2p()
- Two-parameter mixture model by Zhang and Luck (2008).
-
mixture3p()
- Three-parameter mixture model by Bays et al (2009).
-
sdm()
sdmSimple()
- Signal Discrimination Model (SDM) by Oberauer (2023)
-
dmixture2p()
pmixture2p()
qmixture2p()
rmixture2p()
- Distribution functions for the two-parameter mixture model (mixture2p)
-
dmixture3p()
pmixture3p()
qmixture3p()
rmixture3p()
- Distribution functions for the three-parameter mixture model (mixture3p)
-
c_sqrtexp2bessel()
c_bessel2sqrtexp()
- Convert between parametrizations of the c parameter of the SDM distribution
-
calc_error_relative_to_nontargets()
- Calculate response error relative to non-target values
-
k2sd()
- Transform kappa of the von Mises distribution to the circular standard deviation
-
restructure(<bmmfit>)
- Restructure Old
bmmfit
Objects
-
softmax()
softmaxinv()
- Softmax and logsoftmax functions and their inverse functions
-
wrap()
- Wrap angles that extend beyond (-pi;pi)
-
oberauer_lin_2017
- Data from Experiment 1 reported by Oberauer & Lin (2017)
-
zhang_luck_2008
- Data from Experiment 2 reported by Zhang & Luck (2008)
-
bmf2bf()
- Convert
bmmformula
objects tobrmsformula
objects
-
check_data()
- Generic S3 method for checking data based on model type
-
check_formula()
- Generic S3 method for checking if the formula is valid for the specified model
-
check_model()
- Generic S3 method for checking if the model is supported and model preprocessing
-
configure_model()
- Generic S3 method for configuring the model to be fit by brms
-
configure_prior()
- Generic S3 method for configuring the default prior for a bmmodel
-
postprocess_brm()
- Generic S3 method for postprocessing the fitted brm model
-
revert_postprocess_brm()
- Generic S3 method for reverting any postprocessing of the fitted brm model
-
use_model_template()
- Create a file with a template for adding a new model (for developers)
-
bmm()
fit_model()
- Fit Bayesian Measurement Models
-
sdm()
sdmSimple()
- Signal Discrimination Model (SDM) by Oberauer (2023)