Three-parameter mixture model by Bays et al (2009).
Arguments
- resp_error
The name of the variable in the dataset containing the response error. The response error should code the response relative to the to-be-recalled target in radians. You can transform the response error in degrees to radians using the
deg2rad
function.- nt_features
A character vector with the names of the non-target feature values. The non_target feature values should be in radians and centered relative to the target. Alternatively, if regex=TRUE, a regular expression can be used to match the non-target feature columns in the dataset.
- set_size
Name of the column containing the set size variable (if set_size varies) or a numeric value for the set_size, if the set_size is fixed.
- regex
Logical. If TRUE, the
nt_features
argument is interpreted as a regular expression to match the non-target feature columns in the dataset.- ...
used internally for testing, ignore it
Details
Domain: Visual working memory
Task: Continuous reproduction
Name: Three-parameter mixture model by Bays et al (2009).
Citation:
Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 1-11
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1
: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.kappa
: Concentration parameter of the von Mises distributionthetat
: Mixture weight for target responsesthetant
: Mixture weight for non-target responses
Fixed parameters:
mu1
= 0mu2
= 0kappa2
= -100
Default parameter links:
mu1 = tan_half; kappa = log; thetat = identity; thetant = identity
Default priors:
mu1
:main
: student_t(1, 0, 1)
kappa
:main
: normal(2, 1)effects
: normal(0, 1)
thetat
:main
: logistic(0, 1)
thetant
:main
: logistic(0, 1)
Examples
if (FALSE) { # isTRUE(Sys.getenv("BMM_EXAMPLES"))
# generate artificial data from the Bays et al (2009) 3-parameter mixture model
dat <- data.frame(
y = rmixture3p(n = 2000, mu = c(0, 1, -1.5, 2)),
nt1_loc = 1,
nt2_loc = -1.5,
nt3_loc = 2
)
# define formula
ff <- bmmformula(
kappa ~ 1,
thetat ~ 1,
thetant ~ 1
)
# specify the 3-parameter model with explicit column names for non-target features
model1 <- mixture3p(resp_error = "y", nt_features = paste0("nt", 1:3, "_loc"), set_size = 4)
# fit the model
fit <- bmm(
formula = ff,
data = dat,
model = model1,
cores = 4,
iter = 500,
backend = "cmdstanr"
)
# alternatively specify the 3-parameter model with a regular expression to match non-target features
# this is equivalent to the previous call, but more concise
model2 <- mixture3p(resp_error = "y", nt_features = "nt.*_loc", set_size = 4, regex = TRUE)
# fit the model
fit <- bmm(
formula = ff,
data = dat,
model = model2,
cores = 4,
iter = 500,
backend = "cmdstanr"
)
}