Three versions of the Interference measurement model by Oberauer and Lin (2017). - the full, bsc, and abc.
IMMfull(), IMMbsc(), and IMMabc() are deprecated and will be removed in the future.
Please use imm(version = 'full'), imm(version = 'bsc'), or imm(version = 'abc') instead.
Usage
imm(
resp_error,
nt_features,
nt_distances,
set_size,
regex = FALSE,
version = "full",
...
)
IMMfull(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...)
IMMbsc(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...)
IMMabc(resp_error, nt_features, set_size, regex = FALSE, ...)Arguments
- resp_error
The name of the variable in the provided dataset containing the response error. The response Error should code the response relative to the to-be-recalled target in radians. You can transform the response error in degrees to radian using the
deg2radfunction.- nt_features
A character vector with the names of the non-target variables. The non_target variables should be in radians and be centered relative to the target. Alternatively, if regex=TRUE, a regular expression can be used to match the non-target feature columns in the dataset.
- nt_distances
A vector of names of the columns containing the distances of non-target items to the target item. Alternatively, if regex=TRUE, a regular expression can be used to match the non-target distances columns in the dataset. Only necessary for the
bscandfullversions.- set_size
Name of the column containing the set size variable (if set_size varies) or a numeric value for the set_size, if the set_size is fixed.
- regex
Logical. If TRUE, the
nt_featuresandnt_distancesarguments are interpreted as a regular expression to match the non-target feature columns in the dataset.- version
Character. The version of the IMM model to use. Can be one of
full,bsc, orabc. The default isfull.- ...
used internally for testing, ignore it
Details
Domain: Visual working memory
Task: Continuous reproduction
Name: Interference measurement model by Oberauer and Lin (2017).
Citation:
Oberauer, K., & Lin, H.Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21-59
Version: full
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.kappa: Concentration parameter of the von Mises distributiona: General activation of memory itemsc: Context activations: Spatial similarity gradient
Fixed parameters:
mu1= 0mu2= 0kappa2= -100
Default parameter links:
mu1 = tan_half; kappa = log; a = log; c = log; s = log
Default priors:
mu1:main: student_t(1, 0, 1)
kappa:main: normal(2, 1)effects: normal(0, 1)
a:main: normal(0, 1)effects: normal(0, 1)
c:main: normal(0, 1)effects: normal(0, 1)
s:main: normal(0, 1)effects: normal(0, 1)
Version: bsc
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.kappa: Concentration parameter of the von Mises distributionc: Context activations: Spatial similarity gradient
Fixed parameters:
mu1= 0mu2= 0kappa2= -100
Default parameter links:
mu1 = tan_half; kappa = log; c = log; s = log
Default priors:
mu1:main: student_t(1, 0, 1)
kappa:main: normal(2, 1)effects: normal(0, 1)
c:main: normal(0, 1)effects: normal(0, 1)
s:main: normal(0, 1)effects: normal(0, 1)
Version: abc
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.kappa: Concentration parameter of the von Mises distributiona: General activation of memory itemsc: Context activation
Fixed parameters:
mu1= 0mu2= 0kappa2= -100
Default parameter links:
mu1 = tan_half; kappa = log; a = log; c = log
Default priors:
mu1:main: student_t(1, 0, 1)
kappa:main: normal(2, 1)effects: normal(0, 1)
a:main: normal(0, 1)effects: normal(0, 1)
c:main: normal(0, 1)effects: normal(0, 1)
Additionally, all imm models have an internal parameter that is fixed to 0 to allow the model to be identifiable. This parameter is not estimated and is not included in the model formula. The parameter is:
b = "Background activation (internally fixed to 0)"
Examples
if (FALSE) { # isTRUE(Sys.getenv("BMM_EXAMPLES"))
# load data
data <- oberauer_lin_2017
# define formula
ff <- bmmformula(
kappa ~ 0 + set_size,
c ~ 0 + set_size,
a ~ 0 + set_size,
s ~ 0 + set_size
)
# specify the full IMM model with explicit column names for non-target features and distances
# by default this fits the full version of the model
model1 <- imm(
resp_error = "dev_rad",
nt_features = paste0("col_nt", 1:7),
nt_distances = paste0("dist_nt", 1:7),
set_size = "set_size"
)
# fit the model
fit <- bmm(
formula = ff,
data = data,
model = model1,
cores = 4,
backend = "cmdstanr"
)
# alternatively specify the IMM model with a regular expression to match non-target features
# this is equivalent to the previous call, but more concise
model2 <- imm(
resp_error = "dev_rad",
nt_features = "col_nt",
nt_distances = "dist_nt",
set_size = "set_size",
regex = TRUE
)
# fit the model
fit <- bmm(
formula = ff,
data = data,
model = model2,
cores = 4,
backend = "cmdstanr"
)
# you can also specify the `bsc` or `abc` versions of the model to fit a reduced version
model3 <- imm(
resp_error = "dev_rad",
nt_features = "col_nt",
set_size = "set_size",
regex = TRUE,
version = "abc"
)
fit <- bmm(
formula = ff,
data = data,
model = model3,
cores = 4,
backend = "cmdstanr"
)
}