Interference measurement model by Oberauer and Lin (2017).
Usage
IMMfull(resp_err, nt_features, nt_distances, setsize, regex = FALSE, ...)
IMMbsc(resp_err, nt_features, nt_distances, setsize, regex = FALSE, ...)
IMMabc(resp_err, nt_features, setsize, regex = FALSE, ...)
Arguments
- resp_err
The name of the variable in the provided dataset containing the response error. The response Error should code the response relative to the to-be-recalled target in radians. You can transform the response error in degrees to radian using the
deg2rad
function.- nt_features
A character vector with the names of the non-target variables. The non_target variables should be in radians and be centered relative to the target. Alternatively, if regex=TRUE, a regular expression can be used to match the non-target feature columns in the dataset.
- nt_distances
A vector of names of the columns containing the distances of non-target items to the target item. Alternatively, if regex=TRUE, a regular expression can be used to match the non-target distances columns in the dataset. Only necessary for the
IMMbsc
andIMMfull
models.- setsize
Name of the column containing the set size variable (if setsize varies) or a numeric value for the setsize, if the setsize is fixed.
- regex
Logical. If TRUE, the
nt_features
andnt_distances
arguments are interpreted as a regular expression to match the non-target feature columns in the dataset.- ...
used internally for testing, ignore it
Details
Domain: Visual working memory
Task: Continuous reproduction
Name: Interference measurement model by Oberauer and Lin (2017).
Citation:
Oberauer, K., & Lin, H.Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21-59
Version: IMMfull
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1
: Location parameter of the von Mises distribution for memory responses(in radians). Fixed internally to 0 by default.kappa
: Concentration parameter of the von Mises distribution (log scale)a
: General activation of memory itemsc
: Context activations
: Spatial similarity gradient
Fixed parameters:
mu1
= 0
Version: IMMbsc
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target variables should be in radians and be centered relative to the target
Parameters:
mu1
: Location parameter of the von Mises distribution for memory responses(in radians). Fixed internally to 0 by default.kappa
: Concentration parameter of the von Mises distribution (log scale)c
: Context activations
: Spatial similarity gradient
Fixed parameters:
mu1
= 0
Version: IMMabc
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1
: Location parameter of the von Mises distribution for memory responses(in radians). Fixed internally to 0 by default.kappa
: Concentration parameter of the von Mises distribution (log scale)a
: General activation of memory itemsc
: Context activation
Fixed parameters:
mu1
= 0
Additionally, all IMM models have an internal parameter that is fixed to 0 to allow the model to be identifiable. This parameter is not estimated and is not included in the model formula. The parameter is:
b = "Background activation (internally fixed to 0)"
Examples
if (FALSE) {
# load data
data <- OberauerLin_2017
# define formula
ff <- bmmformula(
kappa ~ 0 + set_size,
c ~ 0 + set_size,
a ~ 0 + set_size,
s ~ 0 + set_size
)
# specify the full IMM model with explicit column names for non-target features and distances
model1 <- IMMfull(resp_err = "dev_rad",
nt_features = paste0('col_nt',1:7),
nt_distances = paste0('dist_nt',1:7),
setsize = 'set_size')
# fit the model
fit <- fit_model(formula = ff,
data = data,
model = model1,
parallel = T,
iter = 500,
backend = 'cmdstanr')
# alternatively specify the IMM model with a regular expression to match non-target features
# this is equivalent to the previous call, but more concise
model2 <- IMMfull(resp_err = "dev_rad",
nt_features = 'col_nt',
nt_distances = 'dist_nt',
setsize = 'set_size',
regex = TRUE)
# fit the model
fit <- fit_model(formula = ff,
data = data,
model = model2,
parallel=T,
iter = 500,
backend='cmdstanr')
}